Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Les sujets
Type de document
Gamme d'année
1.
Int J Biol Macromol ; 228: 715-731, 2023 Feb 15.
Article Dans Anglais | MEDLINE | ID: covidwho-2165361

Résumé

For reasons of high transmissibility and virulence, Alpha (UK, B.1.1.7) and Beta (South African, B.1.351) SARS-CoV-2 variants are classified with other types as variants of concern. Here we report on the influence of royal jelly (RJ) protein fraction (PF)50 (major RJ protein 2 and its isoform X1) on the entry of these variants into the ACE2-human embryonic kidney (HEK) 293 cells using the lentiviral system. The efficiency of PF50 on SARS-CoV-2 replication (RNA-dependent RNA polymerase "RdRp" activity), as well as its impact on bleomycin-induced lung injury in vitro, were also assessed. The PF50 efficiently inhibited infection of kidney cells with the UK and S. African variant spikes of pseudotyped lentivirus particles (IC50 = 7.25 µM and 16.92 µM, respectively) and suppressed the RdRp activity (IC50 = 29.93 µM). Moreover, PF50 displayed protective and therapeutic efficacy against lung injury due to its antioxidant, anti-inflammatory, and angiotensin II blocking activities. The current findings, taken together, offer a novel perspective on PF50 as a promising agent against COVID-19.


Sujets)
COVID-19 , Lésion pulmonaire , Humains , SARS-CoV-2 , Cellules HEK293
2.
J Funct Foods ; 75: 104282, 2020 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-1023637

Résumé

Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-silico analyses have been performed to predict the impact of these proteins on viral entry, replication, and complications. These proteins have shown a high potency in sialic acid hydrolysis from the lung cells (WI-38) surface. Docking analysis showed that these proteins have a high binding affinity to viral receptor-binding sites in the receptor-binding domain, causing attachment prevention. Moreover, MRJPs can exert an inhibitory influence, via different mechanisms, for SARS-CoV-2 non-structural proteins (main and papain proteases, RNA replicase, RNA-dependent RNA polymerase, and methyltransferase). Also, they can bind to hemoglobin-binding sites on viral-nsps and prevent their hemoglobin attack. Thus, MRJP2 and MRJP2 X1 can be a promising therapy for SARS-CoV-2 infection.

SÉLECTION CITATIONS
Détails de la recherche